Александр Сергеев
Тайна «веера» миров. Квантовые миры
Что такое квантовая механика и почему квантовый мир можно рассчитать и даже понять, но не удается вообразить? В попытке представить себе построенную на этих принципах Вселенную (а точнее, даже целые грозди, веера вселенных) многие специалисты по квантовой физике углубляются в философские и даже мистические сферы.
В 1874 году 16-летний выпускник гимназии Макс Планк стоял перед непростым выбором: посвятить жизнь музыке или физике. Между тем его отец хотел, чтобы Макс продолжил юридическую династию. Он устроил сыну встречу с профессором Филиппом фон Жолли, попросив того остудить интерес наследника к физике. Как писал Планк в своих мемуарах, Жолли «изобразил физику как высокоразвитую, едва ли не полностью исчерпавшую себя науку, которая близка к тому, чтобы принять окончательную форму...». Такого мнения в конце XIX века придерживались многие. Но Планк все же выбрал физику и оказался у истоков величайшей революции в этой науке.
В апреле 1900 года физик лорд Кельвин, в честь которого теперь названа шкала абсолютных температур, заявил на лекции, что красоту и чистоту здания теоретической физики омрачает лишь пара «темных облачков» на горизонте: неудачные попытки обнаружить мировой эфир и проблема с объяснением спектра излучения нагретых тел. Но не успел закончиться год, а с ним и XIX столетие, как Планк решил проблему теплового спектра, введя понятие кванта минимальной порции лучистой энергии. Идея о том, что энергия может испускаться только фиксированными порциями, подобно пулям из автомата, а не воде из шланга, шла вразрез с представлениями классической физики и стала отправной точкой на пути к квантовой механике.
Работа Планка стала началом цепочки очень странных открытий, которые сильно изменили устоявшуюся физическую картину мира. Объекты микромира молекулы, атомы и элементарные частицы отказывались подчиняться математическим законам, отлично зарекомендовавшим себя в классической механике. Электроны не хотели обращаться вокруг ядер по произвольным орбитам, а удерживались только на определенных дискретных энергетических уровнях, неустойчивые радиоактивные атомы распадались в непредсказуемый момент без каких-либо конкретных причин, движущиеся микрообъекты проявлялись то как точечные частицы, то как волновые процессы, охватывающие значительную область пространства.
Привыкнув со времен научной революции XVII века к тому, что математика это язык природы, физики устроили настоящий мозговой штурм и к середине 1920-х годов разработали математическую модель поведения микрочастиц. Теория, названная квантовой механикой, оказалась самой точной среди всех физических дисциплин: до сих пор не обнаружено ни единого отклонения от ее предсказаний (хотя некоторые из этих предсказаний получаются из математически бессмысленных выражений вроде разности двух бесконечных величин). Но вместе с тем точный смысл математических конструкций квантовой механики практически
не поддается объяснению на обыденном языке.
Взять, к примеру, принцип неопределенности, одно из фундаментальных соотношений квантовой физики. Из него следует, что чем точнее измерена скорость элементарной частицы, тем меньше можно сказать о том, где она находится, и наоборот. Будь автомобили квантовыми объектами, водители не боялись бы фоторегистрации нарушений. Стоило измерить скорость машины радаром, как ее положение становилось бы неопределенным, и она наверняка не попадала бы в кадр. А если бы, наоборот, на снимке зафиксировалось ее изображение, то погрешность измерения на радаре не позволила бы определить скорость.
Достаточно безумная теория
Вместо привычных координат и скоростей квантовую частицу описывают так называемой волновой функцией. Она входит во все уравнения квантовой механики, но ее физический смысл так и не получил вразумительного истолкования. Дело в том, что ее значения выражены не обычными, а комплексными числами, и вдобавок недоступны для непосредственного измерения. Например, для движущейся частицы волновая функция определена в каждой точке бесконечного пространства и меняется во времени. Частица не находится ни в какой конкретной точке и не перемещается с места на место, как маленький шарик. Она словно бы размазана по пространству и в той или иной мере присутствует сразу везде, где-то концентрируясь, а где-то сходя на нет.
Взаимодействие таких «размазанных» частиц еще более усложняет картину, порождая так называемые запутанные состояния. Квантовые объекты при этом образуют единую систему с общей волновой функцией. С ростом числа частиц сложность запутанных состояний быстро растет, и понятия о положении или скорости отдельной частицы лишаются всякого смысла. Размышлять о таких странных объектах крайне трудно. Человеческое мышление тесно связано с языком и наглядными образами, которые сформированы опытом обращения с классическими предметами. Описание поведения квантовых частиц на непригодном для этого языке приводит к парадоксальным утверждениям. «Ваша теория безумна, сказал как-то Нильс Бор после доклада Вольфганга Паули. Вопрос лишь в том, достаточно ли она безумна, чтобы быть правильной». Но без корректного описания явлений на разговорном языке тяжело вести исследования. Физики часто осмысляют математические конструкции, уподобляя их простейшим предметам из обыденной жизни. Если в классической механике 2000 лет искали математические средства, подходящие для выражения повседневного опыта, то в квантовой теории сложилась прямо противоположная ситуация: физики остро нуждались в адекватном словесном объяснении отлично работающего математического аппарата. Для квантовой механики требовалась интерпретация, то есть удобное и в целом корректное объяснение смысла ее основных понятий.
Предстояло ответить на целый ряд принципиальных вопросов. Каково реальное устройство квантовых объектов? Фундаментальна ли неопределенность их поведения, или она лишь отражает недостаточность наших знаний? Что происходит с волновой функцией, когда прибор регистрирует частицу в определенном месте? И наконец, какова роль наблюдателя в процессе квантового измерения?
Играющий в кости Бог
Представление о непредсказуемости поведения микрочастиц шло вразрез со всем опытом и эстетическими пристрастиями физиков. Идеалом считался детерминизм сведение любого явления к однозначным законам механического движения. Многие ожидали, что в глубине микромира найдется более фундаментальный уровень реальности, а квантовую механику сравнивали со статистическим подходом к описанию газа, который применяется лишь из-за того, что трудно отследить движения всех молекул, а не потому, что те сами «не знают», где находятся. Эту «гипотезу скрытых параметров» активнее всех защищал Альберт Эйнштейн. Его позиция вошла в историю под броским слоганом: «Бог не играет в кости».
Бор и Эйнштейн оставались друзьями, несмотря на яростную научную полемику об основаниях квантовой механики. До конца жизни Эйнштейн так и не признал копенгагенскую интерпретацию, принятую большинством физиков.
Его оппонент Нильс Бор утверждал, что волновая функция содержит исчерпывающую информацию о состоянии квантовых объектов. Уравнения позволяют однозначно рассчитать ее изменения во времени, и в математическом плане она не хуже привычных физикам материальных точек и твердых тел. Отличие лишь в том, что она описывает не сами частицы, а вероятность их обнаружения в той или иной точке пространства. Можно сказать, что это не сама частица, а ее возможность. Но где именно она обнаружится при наблюдении, предсказать принципиально невозможно. «Внутри» частиц нет никаких недоступных измерению скрытых параметров, определяющих, когда именно им распадаться или в какой точке пространства появляться при наблюдении. В этом смысле неопределенность фундаментальное свойство квантовых объектов. На стороне этой интерпретации, которую стали называть копенгагенской (по городу, где жил и работал Бор), была сила «бритвы Оккама»: в ней не предполагалось никаких дополнительных сущностей, которых не было в квантово-механических уравнениях и наблюдениях. Это важное преимущество склонило большинство физиков к принятию позиции Бора намного раньше, чем эксперимент убедительно показал, что Эйнштейн ошибался.
И все же копенгагенская интерпретация небезупречна. Главным направлением ее критики стало описание процесса квантового измерения. Когда частица с размытой по большому объему пространства волновой функцией регистрируется экспериментатором в определенном месте, вероятность ее пребывания в стороне от этой точки становится нулевой. А значит, волновая функция должна мгновенно сконцентрироваться в очень небольшой области. Эту «катастрофу» называют коллапсом волновой функции. И она является катастрофой не только для наблюдаемой частицы, но и для копенгагенской интерпретации, поскольку коллапс протекает вопреки уравнениям самой квантовой механики. Физики говорят об этом как о нарушении линейности при квантовом измерении.
Получается, что математический аппарат квантовой механики работает лишь в кусочно-непрерывном режиме: от одного измерения до другого.
А «на стыках» волновая функция скачкообразно меняется и продолжает развитие из принципиально непредсказуемого состояния. Для теории, стремящейся описать физическую реальность на фундаментальном уровне, это было очень серьезным недостатком. «Прибор извлекает из состояния, которое существовало до измерения, одну из содержащихся в нем возможностей», писал об этом явлении один из создателей квантовой механики Луи де Бройль. Такая трактовка неизбежно приводила к вопросу о роли наблюдателя в квантовой физике.
Орфей и Эвридика
Возьмем, к примеру, одиночный радиоактивный атом. По законам квантовой механики он спонтанно распадается в непредсказуемый заранее момент времени. Поэтому его волновая функция представляет сумму двух компонент: одна описывает целый атом, а другая распавшийся. Вероятность, соответствующая первой, убывает, а второй растет. Физики в такой ситуации говорят о суперпозиции двух несовместимых между собой состояний. Если проверить состояние атома, произойдет коллапс его волновой функции и атом с определенной вероятностью окажется либо целым, либо распавшимся. Но в какой момент происходит этот коллапс когда измерительный прибор взаимодействует с атомом или когда о результатах узнает наблюдатель-человек?
Оба варианта выглядят непривлекательно. Из первого следует неприемлемый вывод о том, что атомы измерительного прибора чем-то отличаются от остальных, раз под их влиянием происходит коллапс волновой функции вместо образования запутанного состояния, как должно быть при взаимодействии квантовых частиц. Второй вариант вносит в теорию так нелюбимый физиками субъективизм. Приходится согласиться, что сознание наблюдателя (тело его с точки зрения квантовой механики все тот же прибор) непосредственно влияет на волновую функцию, то есть на состояние квантового объекта.
Эта проблема была заострена Эрвином Шрёдингером в форме знаменитого мысленного эксперимента. Поместим в ящик кота и устройство с ядом, которое срабатывает при распаде радиоактивного атома. Закроем ящик и подождем, пока вероятность распада достигнет, скажем, 50%. Поскольку никакой информации из ящика к нам не поступает, находящийся в нем атом описывается как суперпозиция целого и распавшегося. Но теперь состояние атома неразрывно связано с судьбой кота, который, до тех пор пока ящик остается запертым, пребывает в странном состоянии суперпозиции живого и мертвого. Но стоит только вскрыть ящик, мы увидим либо голодное животное, либо бездыханный труп, причем, скорее всего, окажется, что в таком состоянии кот пребывает уже некоторое время. Выходит, пока ящик был закрыт, в нем параллельно развивались как минимум две версии истории, но достаточно одного осмысленного взгляда внутрь ящика, чтобы реальной осталась лишь одна из них.
Как тут не вспомнить миф об Орфее и Эвридике:
«Когда бы мог он обернуться (если б обернувшись, он своего деянья не разрушил, едва - едва свершенного) увидеть он мог бы их, идущих тихо следом» («Орфей. Эвридика. Гермес» Р. М. Рильке).
Согласно копенгагенской интерпретации, квантовое измерение, подобно неосторожному взгляду Орфея, мгновенно уничтожает целый куст возможных миров, оставляя только один прут, по которому движется история.
Единая мировая волна
Вопросы, связанные с проблемой квантовых измерений, постоянно подогревали интерес физиков к поискам новых интерпретаций квантовой механики. Одну из самых интересных идей в этом направлении выдвинул в 1957 году американский физик из Принстонского университета Хью Эверетт III. В своей диссертации он поставил на первое место принцип линейности, а значит, и непрерывность действия линейных законов квантовой механики. Это привело Эверетта к выводу, что наблюдателя нельзя рассматривать в отрыве от наблюдаемого объекта, как некую внешнюю сущность.
В момент измерения наблюдатель вступает во взаимодействие с квантовым объектом, и после этого ни состояние наблюдателя, ни состояние объекта не могут быть описаны отдельными волновыми функциями: их состояния спутываются, и волновую функцию можно написать только для единого целого системы «наблюдатель + наблюдаемое». Чтобы завершить измерение, наблюдатель должен сопоставить свое новое состояние с прежним, зафиксированным в его памяти. Для этого возникшую в момент взаимодействия запутанную систему надо вновь разделить на наблюдателя и объект. Но сделать это можно по-разному. В результате получаются разные значения измеряемой величины, но, что еще более интересно, разные наблюдатели. Выходит, что в каждом акте квантового измерения наблюдатель как бы расщепляется на несколько (возможно бесконечно много) версий. Каждая из этих версий видит свой результат измерения и, действуя в соответствии с ним, формирует собственную историю и свою версию Вселенной. С учетом этого интерпретацию Эверетта часто называют многомировой, а саму многовариантную Вселенную Мультиверсом (чтобы не путать ее с космологическим Мультиверсом множеством независимых миров, образующихся в некоторых моделях Вселенной, некоторые физики предлагают называть ее Альтерверсом).
Идея Эверетта непроста и нередко трактуется ошибочно. Чаще всего можно услышать, будто при каждом столкновении частиц вся Вселенная разветвляется, порождая множество копий по числу возможных исходов столкновения. На самом деле квантовый мир, по Эверетту, ровно один. Поскольку все его частицы прямо или косвенно взаимодействовали друг с другом и находятся поэтому в запутанном состоянии, его фундаментальным описанием является единая мировая волновая функция, которая плавно эволюционирует по линейным законам квантовой механики. Этот мир столь же детерминирован, как лапласовский мир классической механики, в котором, зная положения и скорости всех частиц в определенный момент времени, можно рассчитать все прошлое и будущее. В мире Эверетта бесчисленное множество частиц заменено сложнейшей волновой функцией. Это не приводит к неопределенностям, поскольку Вселенную никто не может наблюдать извне. Однако внутри можно бесчисленным множеством способов разделить ее на наблюдателя и окружающий мир.
Понять смысл интерпретации Эверетта помогает такая аналогия. Представьте себе страну с многомиллионным населением. Каждый
ее житель по-своему оценивает происходящие события. В некоторых он прямо или косвенно принимает участие, что меняет как страну, так и его взгляды. Формируются миллионы разных картин мира, которые своими носителями воспринимаются как самая настоящая реальность. Но при этом есть еще и сама страна, которая существует независимо от чьих-то представлений, обеспечивая возможность для их существования. Точно так же единая квантовая Вселенная Эверетта дает место для огромного числа независимо существующих классических картин мира, возникающих у разных наблюдателей. И все эти картины, согласно Эверетту, совершенно реальны, хотя каждая существует лишь для своего наблюдателя.
Парадокс Эйнштейна - Подольского - Розена
Решающим аргументом в споре Эйнштейн Бор стал парадокс, который за 70 лет прошел путь от мысленного эксперимента до работающей технологии. Его идею в 1935 году предложил сам Альберт Эйнштейн совместно с физиками Борисом Подольским и Натаном Розеном. Их целью было продемонстрировать неполноту копенгагенской интерпретации, получив из нее абсурдный вывод о возможности мгновенного взаимовлияния двух частиц, разделенных большим расстоянием. Через 15 лет американский специалист по копенгагенской интерпретации Дэвид Бом, тесно сотрудничавший с Эйнштейном в Принстоне, придумал принципиально осуществимую версию эксперимента с использованием фотонов. Прошло еще 15 лет, и Джон Стюарт Белл формулирует четкий критерий в форме неравенства, позволяющий опытным путем проверить наличие скрытых параметров у квантовых объектов. В 1970-х годах несколько групп физиков ставят эксперименты по проверке соблюдения неравенств Белла, получая противоречивые результаты. Лишь в 1982 1985 годах Алан Аспект в Париже, значительно увеличив точность, окончательно доказывает, что Эйнштейн был неправ. А спустя 20 лет сразу несколько коммерческих фирм создали технологии сверхсекретных каналов связи, основанные на парадоксальных свойствах квантовых частиц, которые Эйнштейн считал опровержением копенгагенской интерпретации квантовой механики.
Из тени в свет
На диссертацию Эверетта мало кто обратил внимание. Сам Эверетт еще до защиты принял приглашение от военного ведомства, где возглавил одно из подразделений, занимающихся численным моделированием последствий ядерных конфликтов, и сделал там блестящую карьеру. Его научный руководитель Джон Уилер поначалу не разделял взглядов своего воспитанника, но они нашли компромиссный вариант теории, и Эверетт представил ее для публикации в научный журнал Reviews of Modern Physics. Редактор Брайс Девитт отнесся к ней весьма негативно и намеревался отклонить статью, но потом неожиданно стал горячим сторонником теории, и статья вышла в июньском номере журнала за 1957 год. Однако с послесловием Уилера: я, мол, не думаю, что все это правильно, но это как минимум любопытно и не бессмысленно. Уилер настаивал, что теорию необходимо обсудить с Нильсом Бором, но тот фактически отказался ее рассматривать, когда в 1959 году Эверетт полтора месяца провел в Копенгагене. Однажды в 1959 году, будучи в Копенгагене, Эверетт встречался с Бором, но и на него новая теория не произвела впечатления.
В известном смысле Эверетту не повезло. Его работа терялась в потоке первоклассных публикаций, выполненных в то же самое время, к тому же была слишком «философской». Сын Эверетта, Марк, как-то сказал: «Отец никогда, никогда не говорил со мной о своих теориях. Он был для меня незнакомцем, существующим в каком-то параллельном мире. Я думаю, что он был глубоко разочарован тем, что он знал про себя, что он гений, но никто в мире больше об этом и не подозревал». В 1982 году Эверетт умер от сердечного приступа.
Сейчас даже трудно сказать, благодаря кому она была извлечена из небытия. Вероятнее всего, это произошло, когда все те же Брайс Девитт и Джон Уилер пытались построить одну из первых «теорий всего» теорию поля, в которой квантование уживалось бы с общим принципом относительности. Потом на необычную теорию положили глаз фантасты. Но только после смерти Эверетта начался настоящий триумф его идеи (правда, уже в формулировке Девитта, от которой десятилетие спустя категорически открестился Уилер). Стало казаться, что многомировая интерпретация обладает колоссальным объяснительным потенциалом, позволяя дать внятную трактовку не только понятию волновой функции, но и наблюдателю с его загадочным «сознанием». В 1995 году американский социолог Дэвид Роб провел опрос среди ведущих американских физиков, и результат был ошеломляющим: 58% назвали теорию Эверетта «верной».
Кто эта девушка?
Тема параллельности миров и слабых (в том или ином смысле) взаимодействий между ними давно присутствует в фантастической художественной прозе. Вспомним хотя бы грандиозную эпопею Роберта Желязны «Хроники Амбера». Однако в последние два десятилетия под подобные сюжетные ходы стало модно подводить солидный научный фундамент. И в романе «Возможность острова» Мишеля Уэльбека квантовый Мультиверс фигурирует уже с прямым указанием на авторов соответствующей концепции. Но собственно параллельные миры это только полдела. Гораздо труднее переложить на художественный язык вторую важнейшую идею теории квантовую интерференцию частиц со своими двойниками. Нет сомнений, что именно эти фантастические превращения дали толчок фантазии Дэвида Линча, когда он работал над фильмом «Малхолланд-драйв». Первая сцена фильма героиня едет ночью по загородной дороге в лимузине с двумя мужчинами, вдруг лимузин останавливается и героиня вступает в беседу со спутниками повторяется в фильме дважды. Только вроде бы и девушка другая, и кончается эпизод иначе. К тому же в промежутке что-то происходит такое, что, кажется, не позволяет считать два эпизода тождественными. В то же время и их близость не может быть случайной. Превращения героинь друг в друга говорят зрителю, что перед ним один и тот же персонаж, только он может находиться в разных (квантовых) состояниях. Поэтому время перестает играть роль дополнительной координаты и не может больше течь независимо от происходящего: оно раскрывается в спонтанных перескоках с одного слоя Мультиверса на другой. Именно как «первый квантовый феномен» трактовал время один из главных популяризаторов идей Эверетта израильский физик Дэвид Дойч. Глубокая физическая идея дает, таким образом, основания художнику презреть любые границы, сдерживающие его желание разнообразить варианты развития сюжета и строить «смешанные состояния» этих разнообразных вариантов.
В поисках сознания
Наблюдателем может быть любая система, например, вычислительная машина, помнящая свои прежние состояния и сравнивающая их с новыми. «Как хорошо известно людям, работающим со сложными автоматами, фактически весь общепринятый язык субъективного опыта полностью применим к таким машинам», пишет Эверетт в своей диссертации. Тем самым он уходит от вопроса о природе сознания. Но его последователи уже не были склонны к такой осторожности. Наблюдателя стали все чаще рассматривать как мыслящее и наделенное волей сознание, а не просто как сенсор с памятью. Это открывает простор для столь же интересных, сколь и спорных попыток объединить в одной концепции традиционную объективистскую физику и различные эзотерические представления о природе человеческого сознания.
Например, доктор физико-математических наук Михаил Менский из Физического института им. П.Н. Лебедева РАН активно развивает свою расширенную концепцию Эверетта, в которой отождествляет сознание с самим процессом разделения альтернатив. Физическая реальность имеет чисто квантовую природу и представлена единой мировой волновой функцией. Однако рационально мыслящее сознание, по Менскому, неспособно непосредственно воспринимать ее и нуждается в «упрощенной» классической картине мира, частью которой оно себя воспринимает и которую само создает (в этом заключается его природа). При определенной подготовке, проявляя свободу воли, сознание способно более или менее произвольно выбирать, какую из бесконечного числа классических проекций квантовой Вселенной оно будет «проживать». Со стороны такой выбор может восприниматься как «вероятностное чудо», при котором «маг» способен оказаться именно в той классической реальности, которая ему желательна, даже если ее реализация маловероятна. В этом Менский усматривает связь своих идей с эзотерическими учениями. Он также вводит понятие «сверхсознания», которое в те периоды, когда сознание отключается (например, во сне, в трансе или медитации), способно проникать в альтернативные эвереттовские миры и черпать там информацию, принципиально недоступную рациональному сознанию.
Другой подход уже не первое десятилетие развивает профессор Гейдельбергского университета Хайнц - Дитер Це. Он предложил многоразумную интерпретацию квантовой механики, в которой наряду с материей, описываемой волновой функцией, имеются сущности иной природы «разумы» (minds). С каждым наблюдателем ассоциировано бесконечное семейство таких «разумов». При каждом эвереттовском расщеплении наблюдателя это семейство тоже делится на части, следуя вдоль каждой ветви. Пропорция, в которой они делятся, отражает вероятность каждой из ветвей. Именно «разумы», по мнению Це, обеспечивают самотождественность сознания человека, например, проснувшись поутру, вы сознаете себя той же личностью, что и ложась спать вчера.
Идеи Це пока не нашли широкого признания у физиков. Один из критиков, Питер Льюис, отметил, что из этой концепции следуют довольно странные выводы
в отношении участия в авантюрах с риском для жизни. Например, если бы вам предложили посидеть в одном ящике вместе с котом Шрёдингера, вы бы, скорее всего, отказались. Однако из многоразумной модели следует, что вы ничем не рискуете: в те варианты реальности, где радиоактивный атом распался и вы с котом были отравлены, сопутствующие вам «разумы» не попадут. Все они благополучно проследуют по той ветви, где вам суждено выжить. А значит, и риска для вас никакого нет.
Это рассуждение, кстати, тесно связано с идеей так называемого квантового бессмертия. Когда вы умираете, это, естественно, происходит лишь в некоторых эвереттовских мирах. Всегда можно найти такую классическую проекцию, в которой на этот раз вы остаетесь в живых. Продолжая это рассуждение бесконечно, можно прийти к выводу, что такого момента, когда умрут все ваши «клоны» во всех мирах Мультиверса, никогда не наступит, а значит, хоть где-то, но вы будете жить вечно. Рассуждение логичное, но результат непредставим, не правда ли?